Surface Science Laboratory for Studying the Surfaces of Superconducting Radio Frequency Cavities*

نویسندگان

  • Andy T. Wu
  • Thomas Jefferson
چکیده

A Surface Science Laboratory (SSL) has been established at JLab to study surfaces relevant to superconducting radio frequency (SRF) cavities. Current operational facilities include a scanning electron microscope equipped with energy dispersive x-ray analysis, a secondary ion mass spectrometry, a metallographic optical microscope, a transmission electron microscope, a high precision and large scan area 3-D profilometer, a scanning field emission microscope, and a fully equipped sample preparation room. A scanning Auger microscope is being commissioned, and will be available for routine usage soon. Results from typical examples of the R&D projects on SRF cavities that were supported in the past through the use of the facilities in the SSL will be briefly reported.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Results from Atomic Layer Deposition and Tunneling Spectroscopy for Superconducting Rf Cavities

Atomic Layer Deposition (ALD) is a process that synthesizes materials in successive monolayers, at rates up to 1 micron/hour. We have been using this technique at Argonne as a possible way to improve superconducting radio frequency (SCRF) cavities performances. Initial experiments using tunneling spectroscopy and ALD have led to a new model for dissipation mechanisms occurring at the surface an...

متن کامل

Surface Studies of Materials for Superconducting Cavities * I

A multitechnique system has been constructed to study materials and processes used for producing high Q superconducting cavities, while constantly maintaining UBV environment. Characterization of a small disc of superconducting material, e. g. Nb, is done by a variety of methods, including AES, XPS, EID, ellipsometry, sputter profiling, and secondary electron yield measurements. The samples may...

متن کامل

Development and Characterization of Thin Film Superconducting Radio Frequency Surfaces for Accelerator Cavities

Superconducting thin films have the potential to improve the performance of particle accelerators. Before these thin films can be implemented, a systematic study on structureproperty correlations is necessary. Here, we present the characterization of niobium thin films deposited onto both ceramic and metallic substrates. In particular, the film microstructure and superconducting properties are ...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

Optimal SQUID based non-destructive test for detecting sub-surface defects with the help of advanced SQUID superconducting sensors and an experimental approach for optimal production method of these sensors from the YBCO superconductor materials

The conventional eddy current method for non-destructive inspection of welding joints has limitations that can examine defects to a certain depth below the surface of the sample and is not suitable for determining deep defects. This limitation can be overcome using the SQUID superconducting sensors. The nonstoichiometric composition of YBCO due to its superconducting temperature and desired cri...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010